1B3.08P

Tactile Sensing Based on Acoustic Resonance Tensor Cell

Hiroyuki SHINODA, Kenichi MATSUMOTO and Shigeru ANDO*
Department of Electronic & Information Engineering,
Tokyo University of Agriculture & Technology
2-24-16 Koganei, Tokyo 184 Japan, shino@cc.tuat.ac.jp
* Faculty of Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyc 113 Japan

ABSTRACT

In this paper we propose a new tactile sensing element,
acoustic resonant tensor cell. The structure is only a
spherical cavity in an elastic tactile sensor body with
two fine ultrasound paths extended respectively to an
ultrasound transmitter and receiver which are placed
at the bottom of the elastomer. The acoustic resonant
frequency of the air in the cavity has an explicit
relation with the principal stresses around it, which is
easily detected by the ultrasound transducers. The
sensor is simple and elastic. The single structure
obtains useful tactile features of multi-dimensions.
The principle and experimental results are described.

Keywords: Tactile sensor, Intelligent sensor, Artifi-
cial skin, Acoustic resonant tensor cell, 3-D structure.

INTRODUCTION

In this paper we propose a new tactile sensing unit,
Acoustic Resonant Tensor Cell, which senses the
stress tensor in an elastic body. The structure is only a
cavity ( ‘spherical’ in this paper ) in an elastic tactile
sensor body with two fine ultrasound paths extended
respectively to an ultrasound transmitter and receiver
placed at the bottom of the elastomer. We will show
the acoustic resonant frequency of the air in the
spherical cavity has an explicit relation with the
principal stresses around it, which is easily detected
by the ultrasound transducers.

The tactile sensor based on the sensing unit can have
prominent characteristics which were not found in the
past sensors [1,2,3] as

1.Elasticity : The sensor is elastic without any rigid
parts and wires.

2.Toughness : It will be tough for mechanical
damages because it has no fragile wires and parts.

3.Freedom of placement : The unit can be placed at
any point in 3-D elastic body [4] without any loss of
sensitivity, accuracy and convenience of
fabrication.

4. Multi-dimensional sensitivity : The single
structure of the unit obtains multi-dimensional
feature of the stress tensor around it with high
accuracy by multiple resonant frequencies of the
cavity. ‘

We originally intended to use the architecture for a
tensor cell tactile sensor element, based on a principle
that the detected rank of stress tensor matrix in an
elastic body corresponds to the dimension of contact
area[5]. (Fig. 1.) However we expect this can be

applied to a force, torque and deformation sensor of a
flexible actuator, as well as to measurement systems
in ergonomic studies to obtain pressure distribution
between a human body and an elastic object.

BASIC PRINCIPLE

Suppose there is a cavity ( ‘spherical’ in Fig.2) in an
elastic body from which two paths are extended to an
ultrasonic transmitter and receiver placed at the
bottom of the elastomer as shown in Fig.2. The shape
of the path is arbitrary but it becomes narrow
smoothly near its junction with the cavity so that the
diameter is sufficiently smaller than the cavity. In
general, the ultrasound from the transmitter can
hardly pass through the cavity to the receiver because
of the acoustic impedance mismatching at the junction.
But only at a resonant frequency determined by the
cavity shape, the sound is transmitted through the
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Fig. 1: Rank of stress tensor vs. contact dimension.
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Fig.2: The structure of an acoustic resonant tensor
cell.
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cavity. ( If there were no viscous and molecular
acoustic loss, the way of transmission would be the
same with that by the direct connection between the
two paths. ) Therefore we can know the resonant
frequencies of the cavity by detecting peak frequencies
of the acoustic transfer property. Here we must note
that the peak frequency of the transmission hardly
depends on the shape of the ‘path’, because the
viscosity of the air in the fine long path prevents
multiple reflections in it.

The next problem is the design of the cavity shape for
obtaining useful tactile feature from the resonant
frequencies. In the next section, we will show the
relation of the resonant frequencies vs. cavity
deformation in case of a ‘spherical cavity.
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Fig.3: Phase maps of redundant resonant modes of the
minimum resonant frequency before (a) and after (b)
deformation.

RESONANCE IN A SPHERICAL CAVITY

We focus our attention on the acoustic resonance of
the minimum resonant frequency in a spherical cavity.
If we neglect the two paths, the resonant mode is
expressed as

p(r,0,6) = f(r)cosBe’ (1)
by a polar r,0,¢ coordinate with an arbitrary direction

and with the origin coinciding with the center of the
sphere, where p is the sound pressure. Fig.3 (a)
shows a resonant mode in which the air vibrates up
and down mainly, with the pressure maximums at the
top and the bottom of the sphere. The theoretical
resonant frequency w, for a cavity with a radius of 7,

is given as w,=208c/r,, where ¢ is the sound
velocity.

Note that any direction of the vibration is allowed in
case of true sphere.

Deformation vs. resonant frequencies

Suppose the sphere is slightly deformed into a
ellipsoid by uniform stress around the cavity. (See
Fig.3 (b).) Then the direction of the vibration which
was arbitrary in a true sphere, is now allowed only
along the three principal axes, and generally the

resonant frequencies f;, f,and f; for each directional
mode are different.

The ratios of the frequency changes to the original
resonant frequency (g, iy, 13) =

(fi/ fos f2l for f2! fo)—-(1, 1, 1) are combined with
the extension ratios of the sphere along the three
principal axes (u;,u,,u;)as

I ) 3 1 1\(u
iy =‘g 3 1w 2
7N * 3)\uy

which is calculated by the perturbation technique[6].

Stress vs. cavity deformation

Elasticity theory gives the relation between uniform
stress around the cavity and the cavity’s extension
ratios as [7]

A 31 9+5v -1-5v -1-5v\/o,
A=) 945v -1-5v| o, | ®

259, 9+5v )\o

3

where (0,,0,,0,) are principal stresses. (Principal
stress is stress along the principal axis i.e. eigen value
of stress tensor matrix.) Therefore the resonant
frequency changes are combined with (o,,0,,0,)as

Uy 5+v 1-3v 1-3v\(o,

3(1~
U =——(L 5+v 1-3vi|o,| 4)
2E(7-5v)
U * 5+v/\o,
where E is Young’s modulus and v is Poisson’s ratio.
The inverse of the transform always stable as

o, E 6-2v 3dv-1 3v-1\{y
O, =—W 6-2v 3v-1 Uy (5)
g, * 6-2v)\u,

2

Fig. 4: Photograph of a 10cm X 10cm X 3cm  silicone
rubber with an acoustic resonant tensor cell.

FABRICATION AND EXPERIMENTS

We fabricated a tensor cell with a radius of 3mm in
transparent silicone rubber ( Shin-Etsu KE-1935 ) as
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shown in Fig. 4. Fig. 5 shows the transfer property of
ultrasound from the transmitter to the receiver when
nothing touches the sensor. A sharp peak was
observed at theoretical resonant frequency of 38 kHz.
The quality factor Q is realized as about 130.
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Fig. 5: Acoustic transfer function from the ultrasonic
transmitter to the receiver through the cavity.
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Fig. 6: Acoustic transfer functions from the
transmitter input to the receiver output under point
contact by a cylinder 3mm in diameter (a) and line
contact (b).

Split of resonant frequency

The transfer property in Fig. 6 (a) is when a point ( a
cylinder 3mm in diameter ) is pressed by 0.5mm on the
sensor surface. The peak of the spectrum splits into

1B3.08P

two because of the frequency difference between the
vertical and the horizontal modes. ( We call a resonant
mode with the vertical symmetrical axis ‘vertical
mode.’ ) In case of line pressing, the modes split into
three as shown in Fig. 6 (b).
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Fig. 7: Resonant frequencies f vs. pressing depth d of
three kinds of objects. Point contact (a), line contact (b)
and plane contact by a disc 5¢m in diameter (c).

Fig. 7 shows the relation between the resonant
frequencies and pressing depth d of three typical kinds
of objects. First, while a point ( a cylinder 3 mm in
diameter ) was pushing the surface, the resonant
frequencies began to split, and the interval of the
peaks became wider linearly. (See Fig. 7 (a).) Because
the cavity was compressed vertically, ( along the line
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running through the contact point and the cavity, ) the
vertical mode’s resonant frequency increased while
horizontal ones decreased. Next, Fig. 7 (b) shows the
case of line contact. In this case, the resonant
frequency of the vertical mode increases while that of
one of two horizontal modes ( which vibrates
perpendicular to the plane including the contact line
and the tensor cell ) decreases, and the other one
changes between the two. Finally, Fig. 7 ( ¢ ) shows
the plots of a disc pressing with a radius of 5 cm. All
the modes have upward tendency.

Detection of principal stresses

Then we obtained Fig. 8 (b) by mapping measured
principal stresses to a space whose horizontal and
vertical axes express the ratio of the second to the
major principal stress and the ratio of the third to the
major, respectively. The inversion from the resonant
frequency change to the principal stress was done by
an experimental equation as

—0,/E\ (10 041 041\(u,
~0,/E| = 10 041|| u, ®6)
—0,/E) \* 10 ) g

in place of Eq. (8), since the size of the cavity is not
zero. The results demonstrate a fundamental property
that the number of non-zero eigen values of stress
tensor ( non-zero principal stresses ) i.e. the ranks of
stress tensor matrix are 1, 2 and 3 for a point contact,
a line contact and a plane contact, respectively. Here
the experiments were done for the three kinds of object
pressed at various locations as in Fig. 8 (a). The
dispersion of the plots is owing mainly to the
inaccuracy of Eq. (6) for the force not normal or not
just above the cavity.
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Fig. 8 : Detected eigen structures of stress tensor
matrix for three kinds of contact types : point, line,
plane. Plots to a space spanned by ratios of 2nd and
3rd principal stresses to the major principal stress.

Detection of the change of contact area

Fig. 9 shows the measured principal stresses vs. the
pressing depth of a sphere with a radius of about 10
cm. It is seen that the ratio of the second principal
stress to the major one increases according to the
pressing depth. The result show that the single cell
can detect the change of the contact area between the
sensor and an object which gives the curvature of the
object.
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Fig. 9 : Measured principal stresses vs. pressing depth
d of a sphere with a radius of about 10c¢m (a). The plots
of the ratios of the measured principal stresses (b).
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