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Abstract 

I n  this paper, we propose a new tactile sensory struc- 
ture using integrated sensing elements what we call 
“tensor cell”. I t  as located sparsely in a flexible body 
of tactile sensor, and samples there the complete in- 
formation of stress tensor w,hich requires six degrees of 
freedom t o  describe it. W e  clarify first the advantage 
of this architecture theoretically based on the elastic- 
i t y  theory and the matrix algebra. Then  the design 
of the actual tensor cell and experimental results are 
described, and an application of it t o  contact surface 
characterization is shown. 
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In this paper we describe at new architecture of tac- 
tile sensor based on a complete stress sensing element 
“Tensor Cell.” Among the previous works, some re- 
searchers proposed a sensor array to detect surface 
three stress components, and pointed out the necessity 
of sheer stress detection[l, 21. De Rossi, et al., empha- 
sized the importance of stress-component discrimina- 
tion in the sensor body based on the observation of 
human skin[3], and attempted to  solve an inversion 
problem of surface fine stress distribution[4, 5, 61. 

In this paper, we emphasize the role of elastic body 
with sparse tensor cells for direct perception of sur- 
face tactile features, as it is suitable for protecting the 
sensing elements from mechanical damage and giving 
softness of the tactile sensor. 

The goal of us is to develop a tactile sensor which 
obtain various useful tactile information by simple sig- 
nal processing and simple fabrication of the sensor us- 
ing three-dimensional structure with inherent intelli- 
gence which resides in the physical property of elastic 
body [8, 9, lo]. 

The architecture and the most fundamental theory 
of the sensor will be preseinted. Then experimental 
results by scale-up model of tensor cell will be shown. 
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Fig. 1 Schematic diagram of the tensor cell1 tactile 
sensor. 

2 The Architecture and Its, Ad- 
vantages 

Schematic diagram of our sensor is shown in Fig. 1. 
Comparing this structure with that of an usual 2-D 
array sensor (Fig. l), we will be able to summarize 
the advantages as 

1. Feature extraction capability of each element : 
As is described later, the eigen structure of stress 
tensor inner the body has an explicit relistion to 
the class of contact style on the surface, thus, 
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the early stage of feature extraction is done by 
the aid of ideally continuous physical property 
without enormous sampling. 

2. Easiness of fabrication: 
As a result of that ability, only sparse location 
of elements is sufficient. Rigorous homogeneity 
of the sensitivity among neighbor cells is not re- 
quested. Efforts of signal processor are lessened. 

3. Softness : 
Compliant sensor body by the sparse location of 
the elements. 

4. Use of 3-D space: 
Multi-scale perception of the surface pressure 
distribution without any computation, which 
greatly improves the feature extraction ability 
from both still and dynamic pattern[8, 111. 

Especially in the following description, we clarify the 
feature extraction capability which resides in a single 
tensor cell. 

ress Tensor vs. Contact 

Before all of discussions, we confirm following matters. 

1. Since the stress tensor matrix T submits to ten- 
sor transform, it can be completely character- 
ized by three eigenvectors and eigenvalues of the 
tensor matrix. In this paper we graphically illus- 
trate tensor by eigenvectors weighted by corre- 
sponding eigenvalue which overlap with the prin- 
cipal axes of stress ellipsoid. 

- sin 6 sin2 B sin 0 cos 0 
A2 = 

(1+,cos,)2 

0 0 sin0 
(4) 

- sin B 
A3 = ( l + c o s R ) ’ ( *  co:O) , 
where (F,. , Fo , F,+j) E F expresses the point force by 

the polar coordinate. Regarding to typical dense and 
soft rubber-like material, the term (1 - 2 0 ) / 3  is within 
order of 1% while any component of Al,A2, and A3 is 
less than 1 where 0 < 7r/2. Therefore we will neglect 
the term of (1 - 20) in following discussions. 

Then we know that under a single point contact, 
the rank of the stress tensor is 1, and it has only one 
non-zero eigenvalue with an eigenvector parallel to the 
line passing through the contact point and observing 
point. The non-zero eigenvalue equals a contact force 
weighted by the cosine rule and an inverse squared 
distance from the contact point to the cell. 

Fig. 2 Coordinate systems. 

3.2 General case 
2. Kernel of T is defined as a vector space spanned 

by eigenvectors of zero eigenvalue. If distributed surface forces Fi(zi, yi) are given, the 
internal stress tensor T is written as a sum of each 
stress tensor element ti from each surface force element 

3.1 Stress tensor by a point force Fi i 
Suppose there exists a point force F on the surface T = xti. ( 5 )  
of half infinite elastic body(Fig. 2).  Under the polar i 
coordinate, the stress tensor is expressed as[l2] 

And each ti(Fd) was given in the previous section. 

3.3 Contact classification by rank 
Now let us consider the eigen structure of tensor ma- , (1) trix T for various contact classes. 3 1 - 2 0  +-- 2ar2 ( A I  FT + A2 F8 + A3F745) 

1. If the contact is concentrated to one point, the 
matrix T has only one non-zero eigenvector par- 
allel to the line passing through the contact 
point and the observing point. 

sin2 6 sin B cos 0 
cos2, : )(2) 

1 

cos$ 
A1 = 
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2.  If the contact is concentrated on a line, each ker- 
nel of tensor t ;  has a common basis which is or- 
thogonal to the plane spanned by the line and 
observing point. Therefore, the rank of T can- 

it can be said that the rank of T equals 2, while 

3. If the contact is spread, except for a trivial case, 

i not exceed 2, moreover except for a trivial case, 

the two non-zero eigenvectors are on that plane. 
(6:1 

where 

3 
w(x, Y) = 

all the eigenvalues are non-zero. 

We summarize this in Fig. 3 and Table 1. It is 
clarified that rank of the tensor corresponds to the 
dimension of the expansion of surface stress distribu- 
tion, and concentrated distribution is localized by the 
direction of eigenvector. 

[Point] (Line) (xG-1 

nonzero eigen-value 

Fig. 3 Eigenvectors of stress tensor with stress ellip- 
soid for various contact. 

Table 1 Contact style vs. eigen structure. 

,act point and cell 

3.4 Evaluating contact position and 
extent from stress element 

Next we will explain another ability of tensor cell. 
From Eq.(l) and ( 5 ) ,  stress tensor at ( O , O ,  -20) un- 
der distribution of Fj(zj, y;) is rewritten by Cartesian 
coordinate as, 

Therefore each stress tensor component is equiv- 
alent to the moment of distribution Fa . wj (wi ~i 
w(x;,yi)) in case Fi wi < 0 Vi .  This assumption is 
almost always valid in case of usual contact condition 
(Fig. 4). 

1)Top-left 2 X 2 sub-matrix 

( :li zi ) -+ Second moment of F; . w;. 

2)Top 2 components of the right column 

3)The bottom-right 

(ax t ,  uya)-+First moment. 

uzd- Integral of the distribution. 

It must be emphasized that such moments of sur- 
face force distribution are obtained only by one point 
of stress tensor. 

Fig. 4 Illustration of w(x, Y ) .  

Finally we write the equations which comlbine the 
stress tensor at  ( O , O ,  - 2 0 )  with parameters character- 
izing the spread of Fj . wi. 

Center of distribution Fi . wi : 
2 0  

c z  z 
(7 1 (26, YG) = -(cxGz, cyt), 

Variance matrix: 

(8) 
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4 at i iz 
In this section, we realize an sized-up model of the ten- 
sor cell in order to validate the theory and usefulness 
of the architecture. 

4.1 A design of cubic tensor cell 
The conditions requested to  the tensor cell will be enu- 
merated as: 

1. Homogeneous sensitivity to six stress compo- 
nents and discrimination capability. 

2. Symmetric structure. 

3. Compactness for the least disturbance to the 
neighbors. 

In this paper, we attempted a cubic design of the 

On the three sides of a 6 mm by 6 mm rigid cube, 

The output voltage of the PVDF element only re- 

And six outputs as 

1. Sum signals: 

tensor cell shown in Fig. 5. 

chemical etched PVDF films were pasted. 

flects the normal stress on it. 

P x  = 01 + 0 2 ,  Py = 03 + 0 4 ,  Pza = 0 5  -k 0 6  

2.  Differential signals: 
qxy = 03 - 04,  qyz = 0 5  - 0 6 1  qzx = 01 - 0 2  

were detected where oi(i = 1, . . .6 )  is each output from 
each element i in Fig. 5 .  

From the symmetry, the outputs in a uniform stress 
field aij are written as 

1 -a --a ( E )  = A ( - .  -a -a 1 - a ) ( $ ; )  1 

( 2 )  qzx 
= Ab( 2:) X (9) 

where -a and p depend only on the Poisson's ratio U 

and sensitive area of the etched PVDF. Regarding to 
our sensor, those parameters was obtained as a=0.24, 
/3 =0.36 by numerical calculation. In this case, any 
of the eigenvalues of the matrix in the upper equation 
equals 0.93, which means that any stress tensor com- 
ponent can be obtained stably. The disturbance to 
the surrounding stress field decreases in proportion to 
inverse cubed distance from the cell, thus, the depth 
and interval of cell location should be several times 
larger than the cell size. 

1.8 mm I ' - -  

0.95 mm 

(a> 

Figure 5: (a) Structure of the tensor cell. PVDF films 
with patterned electrodes are placed on a rigid cube. 
(b) Photograph of the tensor cell. 

Fig. 6 Experimental set-up. A tensor cell in silicone 
rubber with 6 channel charge amplifier. 
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5 Experiments 
The fabricated cell was located inside of silicone rub- 
ber 19 mm below the surface as illustrated in Fig. 
6. The output was obtained through 6 channel charge 
amplifier, and electrical shield was brought by the sur- 
face conductive rubber. In Fig. 7(a), sensor outputs 
under a single point contact (vertical indentation of a 
sphere with radius 5mm, maximum force 0.8 [NI) at 
(.z,y) = (l,O)[cm] is shown. And Fig. 7(b) shows its 
stress ellipsoid at  t = 0.21 sec. It is seen that the max- 
imum eigenvalue is sufficiently larger than the second 
and the third eigenvalue, and the major eigenvector 
points at the contact position. 

I Force 

Measured Stress Tensor 

Elastic Body 

i 1-71 

vectors spanned a plane including the contact line. In 
Fig. 10 all eigenvalues were in comparable order. 

3 

2 

1 

0 

-1  

.X [cm] -1 0 1 2 

Fig. 8 Results of point-contact localization by the 
directions of major eigenvectors. 

Fig. 9 Stress ellipsoid for a line edge along y axis. 

Fig. 7 (a) Outputs of the tensor cell given a point 
force at (2, y) = (1,O) [cm]. (b) Stress ellipsoid at  the 
peak ( t=  0.21 sec). 

Fig. 8 shows the detected positions by tensor cell 
under some single point contacts at  various positions. 
The tensor cell could detect contact positions 1 - 2 
mm accuracy from the directions of major eigenvec- 
tors. For all of the data, ]:he ratios of second eigen- 
value to maximum eigenvalue were less than 10%. 

Fig. 9 and 10 shows the stress ellipsoids from the 
tensor cell under the contact by a line edge along 
E = 0, and cylinder 40 mrn in diameter respectively. 
In Fig. 9, the maximum and the second eigenvalues 
were sufficiently larger than the third which means it 
was detected that the distribution of the surface stress 
was concentrated on a line. And the two major eigen- Fig. 10 Stress ellipsoid for a spread object (a cylinder 

40 mm in diameter). 
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Fig. 11 shows the results of quantitative evaluation 
of contact spread under vertical indentation. The in- 
dented objects were a line edge along 2 = 0,  a cylinder 
30 mm in diameter and a ring whose inside and out- 
side diameter were 35 mm and 50 mm, respectively. 
The ellipses in the figure were drawn so that the center 
overlaps with (ZG, y ~ )  of Eq.(7), and major and minor 
axis are parallel to eigenvectors of M of Eq.(8), and 
equal to square root of the larger and smaller eigen- 
value of it,  respectively. 

It was displayed that even a single tensor cell can 
perceive several important features of the contact style 
on the surface. 

y [cml 

2, 

1 

A I I PLL- 1 Line edge 
\ I  

-2 -1 0 1 2 

x [cml 
Fig. 111 Sensing of the spread of contact by Eq.(7) 
and (8), for vertically indented objects. 

We proposed a tactile sensory architecture based 
on “tensor cell,” an unit to detect all components 
of stress tensor in an elastic body. 

Theoretically we clarified that the rank of inner 
stress tensor matrix corresponds to the dimen- 
sion of the spread of contact, and the spread and 
position can be evaluated by the stress tensor di- 
rectly. 

An exDerimental scale-uD model of 6 mm bv 6 
t e k o r  cell was locatkd in silicone rubber“ 19 
below the surface, and 
Correspondence between the rank of the 
stress tensor and spread of contact was ex- 
amined for three kinds of objects : a small 
sphere with radius 5 mm, a line edge and a 
cylinder 40 mm in diameter. 
Point contact was localized from the major 
eigenvectors of the stress tensor with accu- 
racy of 1 - 2 mm. 

(c) TwGdimensional spreads and positions of 
contact were quantitatively evaluated for 
vertically indented objects : a line edge, a 
cylinder and a ring. 

References 
S. Hackwood, B. Beni, L. A. Hornak, R. Wolfe 
and T. J .  Nelson, “A Torque Sensitive Tactile 
Array for Robotics,” Int. J .  Robotics Res, V01.2, 

H. 6. J .  M. Van Gestel, A. Bossche and J.R. 
Mollinger, “On-Chip Piezoresistive Stress Mea- 
surement in Three Directions,” Sensors and Ac- 
tuators A, Vol. 25, No. 27, pp.801-807, 1991. 
D. De Rossi, et al., “Biomimetic Tactile Sensor 
with Stress-Component Discrimination Capabil- 
ity,” J .  Molecular Electronics, Vo1.3, pp.173-181, 
1987. 
D. De Rossi, A. Caiti, R.Bianchi and G.Canepa, 
“Fine-Form Tactile Discrimination through In- 
version of Data from a Skin-Like Sensor,” Proc. 
1991 IEEE int. Conf. on Robotics and Automa- 
tion, pp.398-403, 1991. 
G.  Canepa, M. Morabito, D. De ROSS~, A. Caiti 
and T. Parisini, “Shape from Touch by a Neural 
Net,” Proc. 1992 IEEE Int. Conf. on Robotics 
and Automation, pp.2075-2080. 
G. Canepa, M. Morabito and D. De Rossi, “Shape 
Estimation with Tactile Sensors : A Radial Basis 
Functions Approach,” Proc. 31st IEEE Conf. on 
Decision and Control, pp.3493-3495, 1992. 
R. E. Ellis and M. &in, “Singular-Value and 
Finite-Element Analysis of Tactile Shape Recog- 
nition,” Proc. 1994 IEEE Int. Conf. on Robotics 
and Automation, vo1.3, pp.2529-2535, 1994. 
H. Shinoda and S. Ando, “ A Tactile Sensing Al- 
gorithm based on Elastic Transfer Function of 
Surface Deformation,” Proc. IEEE ICASSP’92, 
Vo1.3, pp.589-592, San Francisco, 1992. 
HShinoda, M.Uehara and §.Ando, “ A Tac- 
tile Sensor Using Three-Dimensional Structure,” 
Proc. 1993 IEEE Int. Conf. Robotics and Au- 
tomation, pp.435-441, Atlanta, 1993, 
H. Shinoda and S .  Ando, “Ultrasonic Emis- 
sion Tactile Sensor for Contact Localization and 
Characterization,” Proc. 1994 IEEE Int. Conf. 
Robotics and Automation, pp.2536-2543, 1994. 
S. G. Mallat, “Characterization of Signals from 
Multiscaie Edges,” IEEE Trans. on Pattern 
Analysys and Machine Intelligence, Vol. 14, No.7, 

S.P.Timoshenko and J.N.Goodier: “Theory of 
Elasticity,” RiIcGraw Hill, 1970. 

N0.2,  pp.46-61, 1983. 

pp.710-732, 1992. 

- 830 


