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Abstract— We introduce a novel sensing device named 

“three-dimensional capture sheet (3DCS).” The cloth-

like sheet measures its own 3D shape with no external 

equipment. It has many potential applications such as 

3D modeling, size and shape measurement, wearable 

motion capture, tactile sensor, and so on. It consists of a 

lattice structure inside of the sheet, and each link of the 

structure has a sensor chip consisting of a triaxial 

accelerometer and a triaxial magnetometer. The sensor 

chip measures the gravity and the Earth's magnetic field 

to obtain the link posture. After all the link postures are 

obtained, the whole shape of the sheet is reconstructed 

by combining them. Additionally, owing to redundancy 

of the problem, the estimation error (caused by random 

noise, a distorted magnetic field, and so on) can be 

corrected. The feasibility and stability of the shape 

estimation algorithm are confirmed through simulations, 

and the prototype is presented.  

Keywords- Sensor network, Flexible sensing device, 

3D shape, Gravity, Earth's magnetic field 

I. INTRODUCTION 

Measuring a 3D shape of cloth is an interesting 
issue in the field of engineering because it has various 
potential applications. For example, the cloth shape 
wrapping an object roughly represents its shape and 
size. The garment shape gives an approximation of the 
wearer’s pose and motion. The new type of man-
machine interface for 3D modeling or entertainment 
will be realized, which can be handled with one’s both 
hands or by several people. The surface deformation 
of a stuffed toy indicates that someone touched it or 
changed its pose (i.e. tactile or proprioceptive 
sensation).  

We have proposed a novel cloth-like device that 
measures its own 3D shape by utilizing a large number 
of minute sensors distributed on it. The device is 
named “three-dimensional capture sheet (3DCS).” The 
conventional methods for cloth capture are optical or 
vision-based [1]-[4]. However, such methods are weak 
against occluding situations. In addition, external 
equipments such as cameras and light sources are 
required, which can be drawbacks in the applications 
listed above. Unlike them, the 3DCS does not suffer 
from the line-of-sight problem and requires no 
external equipment.  

The proposed approach is motivated by the up-to-
date technological developments. It is getting easier to 
embed a large number of down-sized and low-cost  

 

Figure 1.  Illustration of the 3DCS.  

 

sensors in elastic cloth-like materials, due to the recent 
advances in CMOS-MEMS [5] and the new sensor 
networking technology [6].  

In this paper, we discuss a realization method of 
the 3DCS. Fig. 1 shows the illustration of the 3DCS. A 
lattice structure is mounted on the cloth-like sheet. A 
triaxial accelerometer and a triaxial magnetometer are 
attached on each link. They measure the gravitational 
and the geomagnetic vectors. The posture of the link is 
calculated from the measured data. After the postures 
of all the links are obtained, the whole shape of the 
sheet is computed by combining them. In this method, 
we need to develop only the sheet equipped with the 
two types of sensors because both of the gravity and 
the Earth’s magnetic field are available everywhere on 
the Earth.  

In the previous INSS conference [7], we proposed 
and demonstrated the gravity-based 3DCS. Although it 
works well in many cases, it has some singular states 
where reconstruction is impossible. We therefore 
propose a reinforced method by introducing the 
Earth’s magnetic field as additional information. 
Gravitational and geomagnetic measurement has been 
used in motion capture in the preceding reports [8]-[9]. 
We apply this technique to the 3DCS.  

The following paper outlines first, a description of 
the structure and the theory of 3D shape reconstruction. 
Second, the feasibility of the 3DCS is examined by 
simulation in Section III. The prototype is presented in 
Section IV. Finally, Section V concludes this paper.  



 

   

(a)                                                   (b) 

Figure 2.  (a) 14×14 lattice model made of 1.5 cm rigid tubes 

combined with strings. (b) The lattice can fit a curved surface.  

 

Figure 3.  World coordinate and the posture angles. 

II. THREE-DIMENSIONAL CAPTURE SHEET 

A. Structure 

Fig. 1 shows the illustration of the 3DCS. The 
3DCS consists of rigid links forming a lattice structure. 
A sensor chip is attached on each link which has a 
triaxial accelerometer and a triaxial magnetometer. 
The accelerometer and the magnetometer measure the 
gravitational and the geomagnetic vectors, respectively. 
The measured data are sent to the host computer. The 
x-axes of both sensors are aligned to be parallel to the 
link. The length of each link is the same. The links are 
connected to each other by free-joints.  

Fig. 2 (a) shows the mock-up of the 3DCS 
consisting of rigid tubes combined with strings. Since 
the link length does not change, the lattice structure 
expands or contracts along the diagonal directions, as 
is the case with a textile cloth. This lattice structure 
hence can be mounted on the cloth without inhibiting 
the cloth deformation. As shown in Fig. 2 (b), the 
structure is able to cover a smooth curved surface. 

B. Problem Settings 

First, we introduce the following assumptions to 
restrict the problem to a static and ideal case.  

• Acceleration caused by the link motion is negligible 
compared with the gravity acceleration. 

• There is no considerable magnetic field except for 
the Earth’s magnetic field. 

The shape estimation in a dynamic motion or a 
significantly distorted magnetic field is not considered 
at least in this stage.  

The 3DCS utilizes the gravitational vector g and 
the geomagnetic vector b measured with the 
accelerometer and the magnetometer attached on each 
link to estimate its configuration. The posture of each 
link is described by three angles based on the world 
coordinate (Fig. 3); roll α [rad], pitch β [rad], and yaw 
γ [rad] (–π ≤ α < π, –π/2 ≤ β ≤ π/2, and 0 ≤ γ < 2π). All 
the angles of each link are calculated from the 
measured gravitational and geomagnetic data [9], and 
then the link direction vector l is obtained. After all the 
link direction vectors are obtained, the whole shape of 
the 3DCS is reconstructed by combining them in a 3D 
space.  

The concrete formulation is as follows. Here we 
assume that each axis of the sensor is aligned to the 
corresponding axis of the world coordinate (i.e. the x-
axis of the accelerometer to the x-axis of the world 
coordinate) at the initial condition.  

C. Derivation of Link Posture 

All the posture angles are derived directly from the 
gravitational and geomagnetic data measured with the 
sensor chip on each links. The rotation matrix G, from 
the world coordinate to the sensor coordinate, is 
described as  
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where “s” and “c” stand for “sin” and “cos”, 
respectively. Each column of G means the axis of the 
sensor coordinate represented in the world coordinate 
after rotated. The output vector of the accelerometer a 
= [ax, ay, az]

T
 is represented as a product of the 

transposed matrix of G and the gravitational vector g = 
g [0, 0, -1]

T
 (g [m/s

2
] is the gravity acceleration);  
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Similarly, the output of the magnetometer m = [mx, my, 
mz]

T
 is represented as a product of G

T
 and the 

geomagnetic vector b = b [cθ, 0, -sθ]
T
 (b [T] is the flux 

density of the Earth’s magnetic field and θ [rad] is the 
declination angle);  
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Figure 4.  1×1 lattice structure. The lattice points p1, p2, p3 are 

represented by only 3 links l0, l1, l3. That means l2 is redundant.  

 

α, β, and γ are obtained by solving (2) and (3) without 
knowledge of the values of g, b, and θ. For example,  
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Eventually, the link direction vector l is obtained, 
which consists of β, γ, and the link length l [m];  
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After the same algorithm is applied to each link, the 
whole configuration is estimated by combining them.  

D. Redundancy 

The reconstruction problem explained above has 
some redundancy. Here the degree of the redundancy 
is figured out from the numbers of unknown 
parameters and available equations. We think about an 
N×N lattice structure. N is the number of the links 
forming one side of the structure. The goal is to 
determine 3D positions of all the lattice points. While 
one of the points is fixed as a reference point, the 
unknown parameters are the three coordinate values 
for each point; the total number is 3×{(N+1)

2
-1}. On 

the other hand, the available equations are about the 
two posture angles (β and γ) and the length (l) for each 
link; the total number is 3×2N(N+1). The ratio µ of the 
parameters to the equations is  
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This means the maximum number of the redundant 
DOFs is as many as the number of the parameters. The 
redundancy can be used to reduce effects of noise in a 
way similar to sensor fusion [10].  

For example, we take a case in which N = 1. Then 
µ = 3/4. This is understood as follows. Although the 

1×1 lattice structure (lattice unit) is formed by 4 links, 
the lattice points are determined by only 3 links l0, l1, 
l3 as shown in Fig. 4. That means the other link l2 is 
redundant. l2 is utilized to elicit an additional vector 
equation;  

2103 llll =++− .                                                  (9) 

By optimizing βi and γi (i is the link identification) 
according to (9), they are re-estimated to be more 
appropriate.  

Practically, in order to reduce the number of the 
parameters in (9), we fix βi to the initial value obtained 
from (5) and optimize only γi. The Earth’s magnetic 
field is easily distorted by magnets, coils, or 
ferromagnetic materials. That leads to estimation 
errors on the yaw angles. In contrast, the pitch angles 
are reliable as long as a static situation keeps since 
they are derived from the acceleration data.   

III. SIMULATIONS AND RESULTS 

A. Methods 

The purpose of the simulation was to confirm if it 
was feasible to reconstruct the shape of a 
computational object based on the proposed algorithm. 
A computational model of a 13×13 lattice structure 
comprised of links was used as the model of the 3DCS. 
In this lattice model, the link was modeled as a rigid 
body so that the link length (2.0 cm) did not change, 
and the node was modeled as a free-joint.  

The lattice model was laid over a target 
computational shape. The position and posture of each 
link were determined by iterative calculation. 
According to the link posture angles, the outputs of the 
accelerometer and magnetometer were simulated as 
the rotated vectors of the virtual gravitational and 
geomagnetic vectors.  

After that, based on the acquired acceleration and 
magnetic data, the shape of the computational object 
was estimated. The posture angles α, β, and γ were 
analytically determined by (4), (5), and (6). In order to 
re-estimate the yaw angle γ, the following numerical 
calculation was conducted. First, we modify (9) into a 
minimization problem, that is  
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where j is the coordinate identification. Here, γi are 
unknown parameters. If the minimum value of P is 
equal to zero, the solutions for (10) are also the 
solutions for (9). Second, we solve (10) by the 
conjugate gradient method [11]. The values of γi 
obtained from (6) are used as the initial values. 
Accordingly, the probable values of γi are obtained.   

B. Results on Shape Estimation 

An example is shown in which a Gaussian is used 
as a target shape. Fig. 5 shows the computed lattice 



 

 

Figure 5.  Simulation results. The far and the near plots are the 

lattice model and the estimated shape, respectively.  

 

model laid over the Gaussian shape (plots at far side) 
and the shape reconstructed from the acceleration and 
magnetic data (plots at near side). The Gaussian shape 
is successfully reproduced.  

C. Effects of Acceleration and Magnetic Noises 

The results in Fig. 5 were obtained without 
considering effects of noise. There are several possible 
causes of disturbance in the real situation, including 
random noise on the sensor data, change of the link 
length, acceleration of motion, and magnetic distortion. 
Among the causes listed above, the most major cause 
is considered to be the noise on the sensor data. In 
order to investigate the stability of the 3DCS under 
various S/N ratios, the following simulation was 
carried out.  

The simulation was conducted in the same manner 
as described in Section III-A, except that noises were 
added to each component of the acceleration and 
magnetic data. The noises were generated using the 
Mersenne Twister algorithm [12]. The acceleration 
and magnetic noise levels were represented as the 
percentages compared to the gravity g and the 
horizontal geomagnetic flux density bcθ, respectively.  

Fig. 6 shows the maximum values of the 
estimation errors as the function of the acceleration 
and magnetic noise levels. The estimation error of 
each trial is the maximum distance between the 
corresponding nodes of the lattice model and the 
reconstructed model, which is normalized by the side 
length of the 3DCS. The reconstructed shape has 
uncertainty in the absolute position and posture. 
Therefore, the estimation error was determined as 
follows. The sum of the distance between the 
corresponding nodes of the lattice model and the 
reconstructed model (i.e. the estimation error sum) 
was calculated. The absolute position and posture of 
the reconstructed model were varied so that the 
estimation error sum was minimized based on the 
least-square method. Note that if no errors were added 
to the acceleration and magnetic outputs, the lattice 
model and the reconstructed shape should be identical.  

 

Figure 6.  Simulation results on effects of noise. The worst cases, 

i.e. the envelope of the error plot, are shown (10 trials per each 
noise level). The area where the maximum estimation error is lower 

than 15 % is colored deeply. 

 

     
(a)                                           (b) 

Figure 7.  Examples in the cases of (a) 5 % acc. and 20 % mag. 

noises, and (b) 10 % acc. and 20 % mag. noises. 

 

10 trials per each noise level were conducted. The 
maximum value of the estimation error among all the 
nodes was chosen and shown in Fig. 6 for each noise 
condition.  

From our observation of this simulation, it turned 
out that the maximum estimation error higher than 
15 % (i.e. 39 mm) is critical. Based on that benchmark, 
it determined that the noise levels are allowed up to 
8 % for the acceleration data (i.e. about 0.8 m/s

2
) and 

25 % for the magnetic data (i.e. about 7.5 µT in 
Tokyo). Typical examples are shown in Fig. 7; (a) 
successful and (b) unsuccessful. 

D. Effectiveness of Correction Algorithm 

In order to examine the effectiveness of the 
correction algorithm described in Section II-D, the 
following simulation was carried out. It was conducted 
in the same manner as described in Section III-A, 
except that a single-loop coil (magnetic source) added 
an additional magnetic field to the Earth’s magnetic 
field. The coil was parallel to the x-y plane and located 
just above the model shape at a distance d [m] from 
the surface of the 3DCS (Fig. 8). The diameter of the 
coil was 10 cm and the current I [A] was 10 A. The 
magnetic field arisen from the coil was calculated 
based on the Biot-Savart law.  



 

 

Figure 8.  Simulation setting with a single-loop coil. The diameter 

is 10 cm and the current I is 10 A.  

 

 
 

Figure 9.  Simulation results on effectiveness of the correction 

algorithm. The horizontal axis is the distance d, normalized by the 

link length l, between the coil and the 3DCS.  

 

    
(a)                                          (b) 

Figure 10.  Examples in the cases with correction. (a) d/l = 0.9 

(error = 1.1 %) and (b) d/l = 0.8 (error = 6.9 %).  

 

Fig. 9 shows the estimation errors as the function 
of the distances between the top of the model shape 
and the coil. The distance d is normalized by the link 
length l. (Here, l = 2.0 cm.) Because this simulation 
was without random noises, 1 trial per each distance 
was conducted.  

From the results of the simulation, it turned out 
that the shape was successfully reconstructed even 
when the coil was located at a distance of 1.8 cm (d/l = 
0.9) from the surface of the 3DCS, and the estimation 
error was as small as 1.1 % (i.e. about 2.9 mm). The 
same error occurred when d = 9 cm (d/l = 4.5) in the 
case without correction. That suggests that the  

 

Figure 11.  Fabricated sensor chip (13×33 mm2). The main 

components are the 6-axis sensor (SNS, 5.2×6.0 mm2) and the 

microcomputer (PIC, 8.0×8.0 mm2).  

 

 

Figure 12.  Prototype of the 3DCS (16.5×16.5 cm2). 24 sensor chips 

are used. The sensor chips are connected with parallel wires.  

 

estimation algorithm works well unless magnetic 
sources or ferromagnetic materials come very close to 
or contact the 3DCS. Typical examples are shown in 
Fig. 10; (a) successful and (b) unsuccessful. 

IV. PROTOTYPE 

A. System Specifications 

A sensor chip (Fig. 11) was fabricated which has a 
6-axis motion sensor (AMI601, 5.2×6.0 mm

2
, Aichi 

Micro Intelligent Corp.). That sensor functions as both 
a 3-axis accelerometer and a 3-axis magnetometer. 
The chip also has a microcomputer (PIC18F45J10-
I/ML, 8.0×8.0 mm

2
, Microchip Technology Inc.) 

which receives the measured data from the motion 
sensor and transmits the data to the host PC via an I

2
C 

bas line. The operating frequency is 20 MHz. The size 
of the sensor chip is 13×33 mm

2
.  

Fig. 12 shows the prototype of the 3DCS. The side 
length of the lattice structure is 16.5 cm. 24 sensor 
chips are connected with parallel wires and form a 3×3 
lattice structure. At this stage, it is not attached to a 
piece of cloth. The effective sampling rate of the 
system is now 7 Hz.  

B. Demonstration 

Fig. 13 shows a demonstration. The 3×3 lattice 
structure was successfully reconstructed. 



 

 

Figure 13.  Demonstration. Picking up one corner of the 3DCS.  

 

V. CONCLUSION 

This paper proposed a new flexible sensing device 
“3DCS,” which measures its own 3D configuration 
utilizing distributed triaxial accelerometers and triaxial 
magnetometers. The structure and the shape estimation 
algorithm were described. The feasibility of the 
algorithm was verified by simulation. The developed 
prototype was presented.  

In the future, we will develop a small-sized sensor 
chip on which a customized LSI is mounted with a 
triaxial accelerometer and a triaxial magnetometer. 
The LSI is designed to receive the sensor readouts and 
send digital data to the host computer via the two-
dimensional communication sheet [6]. The required 
electrical power is also supplied via the same sheet to 
the sensor chips. By installing such advanced 
technologies, the practical 3DCS will be realized 
without complicated long signal/power wires.  
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